page S1

Electronic Supplementary Information

Lanthanide Ions as Required Cofactors for DNA Catalysts

Victor Dokukin and Scott K. Silverman*

Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA

Table of Contents

Selection progressions page S1
Deoxyribozyme sequences page S2
Assays of individual deoxyribozymes that cleave DNA by hydrolysis page S3
Tabulation of k_{obs} values for the data in Figure 3 and Figure 5 page S5
Mass spectrometry assays of cleavage products for DNA-hydrolyzing deoxyribozymes page S5
Lanthanide ion concentration dependence of the lanthanide-dependent deoxyribozymes page S6
Assays of individual deoxyribozymes that cleave DNA by deglycosylation page S7
Mass spectrometry assays of cleavage products for deglycosylating deoxyribozymes page S11
Piperidine treatment to assess deglycosylation without β-elimination page S12

Selection progressions

Figure S1. Progressions of the *in vitro* selection experiments in this study (DNA cleavage yield as a function of selection round number). For each selection, the round at which individual deoxyribozymes were cloned is marked with an arrow on the plot. The cloned round number is also stated on the right. All incubation times were 12 h (see Experimental Section in the main text).

page S2

Deoxyribozyme sequences

	1 10 I I	20 	30 I	40 I
6YJ10	CGCAGCGGGG	TGAAACGCGG	TGAGAACTCG	AATGTCGTTT
6YJ14	GTGGTACGGG	GTGTAGTAGG	CACGACGCCC	TGCTCCATGG
7YK24	GCGAGGGGCA	AGCGCGAGAA	CCATGATACT	CGCGACTAAG
7YK34	CCCCCGGTCA	TGGGTCAAGC	AGAGCGAGGA	GAATGAAAGG
7YK35	CCCCCGCAAA	GAGAAGCAAG	GGGGACCGCT	TTGAATACGG
6YL4	TGGGGGCTAG	CCGAGAGCAA	AGCCATGCAA	AACGAGGACC
6YL11	GCAGGCGAGT	ACGGCACAAC	AGACCTATAC	AACTAGGTCC
6YL24	CAAGGGTCCA	ACAGCCAGGT	CAAGTTGCCC	GCAGCTGGCC
6YL34	GCAGGCGAGC	ACGGCATGAA	AAGAATGTTA	ATACCATTCT
8YM4	TAGAGAGCCC	AGGAATTAGT	CAGTCCCGGG	TTACGAAAAG
8YM17	AAGTGTACGG	ATGCCCCCTG	CGCCTCGGTC	AAATGTAGGC
8YM20	AACCGTGGCA	GCAGATCCTC	AAGCGGGGAA	GACAGCAGTA
8YM26	AAGCCAGATG	TATTCCTCCT	ACCGCGGACC	GAGGATGGGA
7YE2	CCCCGTCCGC	CCCTGAATTC	CGCAGATTGG	GGATTACTGA
7YE5	CAGACGTGCG	ATCGGATCAA	GTCGCTCGAG	AAGTCCCCCG
7YE8	CCAATCCAAG	TACAATTGGA	TGTCCAGAGA	AGTCCCCCGA
7YE19	CAGCGAGACA	CGTAGTGATC	GGCGCTCGAG	AAGTCCCCCG
6YF2	CCCACACCAT	ATACAAGGGA	AGATGGGGCG	TCCGAGGGCT
6YF13	AAGCCGGAAT	AGCCGATGAG	GCGCCAGAGA	AGTCCCCCGT
6YF15	GTCGCAGCCC	GACGGGGTCT	ACCGGAGTGC	ATGTGGCGGG
6YF16	CCCACCTCAA	ATGTTGTATG	AGCAAGAGAC	GTCCGAGGGT
6YF20	CCCACTGTGC	CAATGCGCCA	TGGCAACAAC	GTCCGAGGGC
6YF27	CCCAGATCGG	CAACGGGTCG	TTCACGATGC	CTACGAGGGT
8YG1	CTCCCCGACC	AACGAGCCTA	GGGGTACATT	CTTAGGTGGC
8YG7	CCGGCGCGCC	AAGGTGCTTA	AAACGCATCC	GTATACGCAA
8YG24	GAGCAGGTAG	GATGAGCACC	GCCCGAAATG	AATATGCCGG
8YG29	ACGCAAGTCC	CCTGTCGTCA	ATGGGGCGGA	CCGCACATTT

Figure S2. Sequences of the initially random (N_{40}) catalytic regions of the deoxyribozymes in this study. Each functional deoxyribozyme comprises the listed catalytic region, surrounded by two Watson-Crick binding arms that interact with the single-stranded DNA substrate. For the in *trans* (intermolecular) assays, the sequence to the 5'-side of each catalytic region was 5'-CCCGAAAGCCTCCTTC-3', and the sequence to the 3'-side of each catalytic region was 5'-ATACGCATAAAGGTAG-3'.

Assays of individual deoxyribozymes that cleave DNA by hydrolysis

Figure S3. Assays of individual deoxyribozymes that catalyze DNA hydrolysis from the selection experiment that used $Zn^{2+} + Ce^{2+}$ (t = 30 s, 1 h, 16 h). Assays were in 70 mM HEPES, pH 7.5, 1 mM ZnCl₂, 10 μ M LnCl₃ (if included), and 150 mM NaCl at 37 °C. The PAGE image on the left is also shown in Figure 3a; the mass spectrometry image on the left is also shown in Figure 4b. See Table S2 for all mass spectrometry data values (for products formed using Ce³⁺). In all cases, the assigned hydrolysis sites were consistent with the PAGE standard ladders (see Experimental Section); definitive assignment of reaction products was made on the basis of the mass spectrometry data.

Figure S4. Assays of individual deoxyribozymes that catalyze DNA hydrolysis from the selection experiment that used $Zn^{2+} + Eu^{2+}$ (t = 30 s, 1 h, 16 h). Assays were in 70 mM HEPES, pH 7.5, 1 mM ZnCl₂, 10 μ M LnCl₃ (if included), and 150 mM NaCl at 37 °C. See Table S2 for all mass spectrometry data values (for products formed using Eu³⁺). In all cases, the assigned hydrolysis sites were consistent with the PAGE standard ladders (see Experimental Section); definitive assignment of reaction products was made on the basis of the mass spectrometry data.

page S4

Figure S5. Assays of individual deoxyribozymes that catalyze DNA hydrolysis from the selection experiment that used $Zn^{2+} + Yb^{2+}$ (t = 30 s, 1 h, 16 h). Assays that included Zn^{2+} were performed in 70 mM HEPES, pH 7.5, 1 mM ZnCl₂, 10 μ M LnCl₃ (if included), and 150 mM NaCl at 37 °C. Assays that omitted Zn^{2+} were performed in 50 mM HEPES, pH 7.5, 10 μ M LnCl₃, and 150 mM NaCl at 37 °C. The PAGE images for the two lanthanide-only assays are also shown in Figure 5a. See Table S2 for all mass spectrometry data values (for products formed using Yb³⁺). In all cases, the assigned hydrolysis sites were consistent with the PAGE standard ladders (see Experimental Section); definitive assignment of reaction products was made on the basis of the mass spectrometry data.

deoxyribozyme	metal ions	$k_{\rm obs}$, h ⁻¹	yield, %
6YJ10	Zn ²⁺ /Ce ³⁺	0.38	69
	Zn ²⁺ /Eu ³⁺	0.0060 ^a	10
6YJ14	Zn ²⁺ /Ce ³⁺	0.11	67
	Zn ²⁺ /Eu ³⁺	0.0072 ^a	27
7YK24	Zn ²⁺ /Eu ³⁺	0.028	28
	Zn ²⁺ /Yb ³⁺	0.098	63
7YK34	Zn ²⁺ /Ce ³⁺	0.091	59
	Zn ²⁺ /Eu ³⁺	0.071	55
	Zn ²⁺ /Yb ³⁺	0.044	40
7YK35	Zn ²⁺ /Ce ³⁺	0.096	53
	Zn ²⁺ /Eu ³⁺	1.46	79
	Zn ²⁺ /Yb ³⁺	1.15	72
6YL4	Zn ²⁺ /Yb ³⁺	0.055	25
6YL11	Zn ²⁺ /Yb ³⁺	0.19	55
6YL24	Zn ²⁺ /Eu ³⁺	<0.003 ^a	2
	Zn ²⁺ /Yb ³⁺	0.18	53
6YL34	Zn ²⁺ /Yb ³⁺	0.17	64
6YL4	Eu ³⁺	0.0015 ^a	5
6YL4	Yb ³⁺	0.038 ± 0.009 ^b	48 ± 3 ^b
6YL24	Eu ³⁺	0.0036 ^a	15
6YL24	Yb ³⁺	0.057 ± 0.020 ^b	71 ± 11 ^b

Tabulation of k_{obs} and yield values for the data in Figure 3 and Figure 5

Table S1. k_{obs} and yield values for the data plotted in Figure 3 and Figure 5. k_{obs} values are from first-order kinetic fits unless otherwise noted. Yield values were observed at the 48 h timepoints. ^{*a*} k_{obs} values are from linear fits to the initial time points. ^{*b*} Values represent mean \pm sd from four independent experiments.

Mass spectrometry assays of cleavage products for DNA-hydrolyzing deoxyribozymes

deoxyribozyme ^a	metal ion	mass	mass	L error, %	mass	mass	R error, %
	cofactor(s)	L calcd.	L found	(found - calcd.)	R calcd.	R found	(found - calcd.)
6YJ10	Zn ²⁺ /Ce ³⁺	7648.0	7648.0	0	5603.7	5602.4	-0.02
6YJ14	Zn ²⁺ /Ce ³⁺	7648.0	7648.2	+0.003	5603.7	5604.6	+0.02
7YK24	Zn ²⁺ /Eu ³⁺	7648.0	7652.2	+0.05	5603.7	5606.4	+0.05
7YK34	Zn ²⁺ /Eu ³⁺	8186.4	8188.0	+0.02	5065.3	5066.2	+0.02
7YK35	Zn ²⁺ /Eu ³⁺	7937.2	7937.4	+0.003	5314.5	5315.6	+0.02
6YL4	Zn ²⁺ /Yb ³⁺	7937.2	7940.2	+0.04	5314.5	5316.1	+0.03
6YL4	Yb ³⁺	7937.2	7934.9	-0.03	5314.5	5312.1	-0.05
6YL11	Zn ²⁺ /Yb ³⁺	7343.8	7345.4	+0.02	5907.9	5909.8	+0.03
6YL24	Zn ²⁺ /Yb ³⁺	7937.2	7939.0	+0.02	5314.5	5315.7	+0.02
6YL24	Yb ³⁺	7937.2	7936.2	-0.01	5314.5	5313.4	-0.02
6YL34	Zn ²⁺ /Yb ³⁺	7343.8	7346.1	+0.03	5907.9	5910.0	+0.04
7YE11	Zn ²⁺	7568.0	7568.4	+0.01	5683.7	5684.3	+0.01
8YG11	Zn ²⁺	8186.4	8189.7	+0.04	5065.3	5067.4	+0.04

Table S2. Mass spectrometry assays of cleavage products for DNA-hydrolyzing deoxyribozymes.

 ^a See Figure S3 (6YJ deoxyribozymes, Zn²⁺/Ce³⁺), Figure S4 (7YK deoxyribozymes, Zn²⁺/Eu³⁺), Figure S5 (6YL deoxyribozymes, Zn²⁺/Yb³⁺ or Yb³⁺ alone), and Figure 7 (7YE11, Zn²⁺; 8YG11, Zn²⁺/Ca²⁺) for each deoxyribozyme's assigned hydrolysis site.

page S6

Lanthanide ion concentration dependence of the lanthanide-dependent deoxyribozymes

Figure S6. Assays of 6YJ10 and 6YJ14 at 1 mM Zn^{2+} and 3, 10, or 30 μ M Ce^{3+} . The data at 10 μ M Ce^{3+} are the same as shown for these two deoxyribozymes in Figure 3b.

Figure S7. Assays of 7YK24, 7YK34, and 7YK35 at 1 mM Zn^{2+} and 3, 10, or 30 μ M Ce^{3+} , Eu^{3+} , or Yb³⁺. For 7YK24, the data at 10 μ M Yb³⁺ shown here are from a different experiment than is shown in Figure 3c (note that the concentration dependence for Yb³⁺ was determined because Yb³⁺ was a more effective cofactor than Eu³⁺). For 7YK34 and 7YK35, the data at 10 μ M Ce³⁺, Eu³⁺, or Yb³⁺ shown here are from the same experiments as shown in Figure 3c.

Figure S8. Assays of 6YL4, 6YL11, 6YL24, and 6YL34 at 1 mM Zn^{2+} and 3, 10, or 30 μ M Yb³⁺. For 6YL24, the data at 10 μ M Yb³⁺ shown here are from a different experiment than is shown in Figure 3d. For 6YL4, 6YL11, and 6YL34, the data at 10 μ M Yb³⁺ shown here are from the same experiments as shown in Figure 3d.

Figure S9. Assays of 6YL4 and 6YL24 at 3, 10, 30, 60, or 100 μ M Yb³⁺ in the absence of Zn²⁺. The data at 10 μ M Yb³⁺ shown here are from a different experiment than is shown in Figure 5.

Assays of individual deoxyribozymes that cleave DNA by deglycosylation

In several cases, the left-hand (L) product formed upon deglycosylation and β -elimination was observed as an L+58 peak, *i.e.*, a peak with mass 58 higher than expected for the L product with a simple 3'phosphate group. Typically both the L and L+58 peaks were observed. Per Figure 1b, the first β elimination reaction after deglycosylation releases the right-hand (R) oligonucleotide product, which is always observed cleanly by mass spectrometry in its simple 5'-phosphate form. The ensuing, second β elimination reaction should release L. However, if the excised nucleoside sugar ring (red in Figure 1b) is partially fragmented rather than fully released from the L product fragment, then the L product fragment will have slightly higher mass than expected. There is precedent for such partial sugar fragmentation, at least for oxidatively induced DNA cleavage reactions (Joshi, R. R.; Likhite, S. M.; Kumar, R. K.; Ganesh, K. N. *Biochim. Biophys. Acta* **1994**, *1199*, 285-292; Pogozelski, W. K.; Tullius, T. D. *Chem. Rev.* **1998**, *98*, 1089-1107). In the present examples, although the available metal ions—either Zn²⁺ alone or Zn²⁺ with Mg²⁺ or Ca²⁺—are not redox-active, we speculate that a similar sugar ring fragmentation occurs (*via* unknown mechanism), leading to the observed L+58 = L+C₂H₂O₂ products.

Figure S10. Assays of individual deoxyribozymes that catalyze DNA deglycosylation from the selection experiment that used Zn^{2+} (t = 30 s, 30 min, 2 h, 16 h). Assays were in 70 mM HEPES, pH 7.5, 1 mM ZnCl₂, and 150 mM NaCl at 37 °C. The arrows above each sequence mark the site(s) of deglycosylation, as assigned on the basis of the MALDI mass spectrometry data. Nucleotides are numbered as part of either the L (left) or R (right) portion of the substrate, counting outward. See Table S3 for all mass spectrometry data values. Mass spectrometry peaks labeled S correspond to uncleaved substrate (z = 2). In all cases, the assigned deglycosylation sites were consistent with the PAGE standard ladders (see Experimental Section); definitive assignment of reaction products was made on the basis of the mass spectrometry data.

page S9

Figure S11. Assays of individual deoxyribozymes that catalyze DNA deglycosylation from the selection experiment that used $Zn^{2+} + Mg^{2+}$ (t = 30 s, 30 min, 2 h, 16 h). Assays were in 70 mM HEPES, pH 7.5, 1 mM ZnCl₂, 40 mM MgCl₂ or CaCl₂ (if included), and 150 mM NaCl at 37 °C. 6YF2, 15, and 27 are clearly more active with $Zn^{2+} + Mg^{2+}$ than with Zn^{2+} alone or $Zn^{2+} + Ca^{2+}$. In contrast, 6YF13, 16, and 20 have nearly equivalent activity with Zn^{2+} alone and $Zn^{2+} + Mg^{2+}$, and they are slightly suppressed by Ca^{2+} . The arrows above each sequence mark the site(s) of deglycosylation, as assigned on the basis of the MALDI mass spectrometry data. Nucleotides are numbered as part of either the L (left) or R (right) portion of the substrate, counting outward. See Table S3 for all mass spectrometry data values (for products formed using $Zn^{2+} + Mg^{2+}$). Mass spectrometry peaks labeled S correspond to uncleaved substrate (z = 2). In all cases, the assigned deglycosylation sites were consistent with the PAGE standard ladders (see Experimental Section); definitive assignment of reaction products was made on the basis of the mass spectrometry data.

page S10

Figure S12. Assays of individual deoxyribozymes that catalyze DNA deglycosylation from the selection experiment that used $Zn^{2+} + Ca^{2+}$ (t = 30 s, 30 min, 2 h, 16 h). Assays were in 70 mM HEPES, pH 7.5, 1 mM ZnCl₂, 40 mM MgCl₂ or CaCl₂ (if included), and 150 mM NaCl at 37 °C. 8YG1 and 24 clearly require $Zn^{2+} + Ca^{2+}$ for activity. 8YG7 is more active with $Zn^{2+} + Mg^{2+}$ than with Zn^{2+} alone or $Zn^{2+} + Ca^{2+}$. 8YG29 is inactive with Zn^{2+} alone and approximately equally active with $Zn^{2+} + Mg^{2+}$ and $Zn^{2+} + Ca^{2+}$. The arrows above each sequence mark the site(s) of deglycosylation, as assigned on the basis of the MALDI mass spectrometry data. Nucleotides are numbered as part of either the L (left) or R (right) portion of the substrate, counting outward. See Table S3 for all mass spectrometry data values (for products formed using $Zn^{2+} + Ca^{2+}$). Mass spectrometry peaks labeled S correspond to uncleaved substrate (z = 2); mass spectrometry peaks labeled X were unassigned and not reproducibly observed. In all cases, the assigned deglycosylation sites were consistent with the PAGE standard ladders (see Experimental Section); definitive assignment of reaction products was made on the basis of the mass spectrometry data.

deoxyribozyme	deglycos.	mass	mass	L error, %	mass	mass	R error, %
	site(s) ^a	L calcd.	L found	(found - calcd.)	R calcd.	R found	(found - calcd.)
8YM4	G(R1): L, R	7937.2	7936.2	-0.01	5065.3	5065.0	-0.01
8YM17	T(L1): L, R	7343.8	7343.8	0	5683.7	5682.8	-0.02
	A(L2): L′, R′	7030.6	7029.9	-0.01	5987.9	5987.8	-0.002
8YM20	G(R1): L, R	7937.2	7940.9	+0.05	5065.3	5067.2	+0.04
	A(R2): L′, R′	8266.4	not obs.	—	4752.1	4754.2	+0.04
	A(R3): L″, R″	8579.6	8574.5	-0.06	4438.9	4441.1	+0.05
8YM26	T(L1): L, R	7343.8	7347.2	+0.05	5683.7	5686.5	+0.05
	A(L2): L′, R′	7030.6	7034.0	+0.05	5987.9	5991.6	+0.06
7YE2	A(R2): L, R	8266.4	8262.6	-0.05	4752.1	4749.9	-0.05
	G(R1): L′, R′	7937.2	not obs.	—	5065.3	5062.6	-0.05
7YE5	G(R1): L, R ^b	7995.2	7993.9	-0.02	5065.3	5064.8	-0.01
7YE8	G(R1): L, R ^b	7995.2	7997.4	+0.03	5065.3	5064.3	-0.02
7YE19	G(R1): L, R ^b	7995.2	7994.7	-0.01	5065.3	5065.7	+0.01
6YF2	A(R2): L, R	8266.4	8267.6	+0.01	4752.1	4752.8	+0.01
	G(R1): L′, R′	7937.2	not obs.	—	5065.3	5066.5	+0.02
6YF13	G(R1): L, R ^b	7995.2	7992.2	-0.04	5065.3	5064.4	-0.02
6YF15	A(R2): L, R	8266.4	8258.9	-0.09	4752.1	4747.4	-0.10
6YF16	A(R2): L, R	8266.4	8266.2	-0.002	4752.1	4752.7	+0.01
	G(R1): L′, R′ ^b	7995.2	not obs.	—	5065.3	5066.1	+0.02
6YF20	A(R2): L, R	8266.4	8268.5	+0.03	4752.1	4753.2	+0.02
6YF27	A(R2): L, R	8266.4	8264.4	-0.02	4752.1	4750.8	-0.03
8YG1	C(unp): L, R	7648.0	7650.6	+0.03	5394.5	5396.9	+0.04
8YG7	A(R2): L, R ^b	8324.4	8334.2	+0.12	4752.1	4756.9	+0.10
8YG24	C(unp): L, R	7648.0	7648.6	+0.01	5394.5	5394.5	0
	T(L1): L′, R′ ^b	7401.8	7402.0	+0.003	5683.7	5684.1	+0.01
8YG29	C(unp): L, R	7648.0	7650.8	+0.04	5394.5	5396.5	+0.04

Mass spectrometry assays of cleavage products for deglycosylating deoxyribozymes

Table S3. Mass spectrometry assays of cleavage products for DNA-deglycosylating deoxyribozymes.

^{*a*} See Figure 6 (8YM deoxyribozymes, Mn²⁺), Figure S10 (7YE deoxyribozymes, Zn²⁺), Figure S11 (6YF deoxyribozymes, Zn²⁺/Mg²⁺), and Figure S12 (8YG deoxyribozymes, Zn²⁺/Ca²⁺) for assigned deglycosylation site(s). Some of the secondary deglycosylation sites observed by PAGE were sufficiently weak such that no corresponding product peaks could be observed by mass spectrometry; a row is omitted altogether for these secondary sites. In addition, the L peaks for several of the secondary sites were not observed, although the R peaks were observed; these instances are denoted by "not obs." in the table.

^b In this case, the L product peak was observed primarily in the L+58 form (see discussion at start of Supplementary Information section entitled "Assays of individual deoxyribozymes that cleave DNA by deglycosylation"). The L calcd. value was computed from the initially expected L value by adding the mass of $C_2H_2O_2$.

Piperidine treatment to assess deglycosylation without β -elimination

Figure S13. Treatment of the DNA-catalyzed cleavage products from individual deoxyribozymes with piperidine and heat offers no evidence that β -elimination following deglycosylation is incomplete. In no case were yields reproducibly different among any of the variously treated samples for the same deoxyribozyme. Assay data is shown for four representative deoxyribozymes; six others were also tested, with similar lack of piperidine effect (8YM26, 7YE5, 6YF2, 6YF15, 8YG1, and 8YG24). Procedure: An 8 µL sample was prepared according to the standard DNA cleavage assay procedure as described in the main text, using the appropriate metal ions (8YM17: 20 mM Mn²⁺; 7YE19: 1 mM Zn²⁺; 6YF16: 1 mM Zn²⁺ + 40 mM Mg²⁺; 8YG7: 1 mM Zn²⁺ + 40 mM Ca²⁺). After 16 h incubation at 37 °C, the sample was brought to 10% (v/v) piperidine or treated with an equivalent volume of water and heated at 95 °C for 30 min or kept at room temperature, followed by 20% PAGE.